12862 measured reflections

 $R_{\rm int} = 0.043$

4592 independent reflections

2442 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[2-(4-Methoxyphenoxy)ethyl]acetamide

Zhen-Hua Shang,* Hai-Jun Lv and Jin-Long Gao

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China Correspondence e-mail: zhenhuashang@yahoo.com.cn

Received 5 May 2007; accepted 8 May 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.056; wR factor = 0.090; data-to-parameter ratio = 16.7.

The title compound, C₁₁H₁₅NO₃, was synthesized from 4methoxyphenol and 2-methyl-4,5-dihydrooxazole under nitrogen. There are two independent molecules in the asymmetric unit, which are connected into one-dimensional chains via intermolecular N-H···O hydrogen bonds.

Related literature

Our interest in nefazodone, which is a type of antidepressant (Madding, 1986), prompted us to synthesize and determine the crystal structure of the title compound.

Experimental

Crystal data

C ₁₁ H ₁₅ NO ₃
$M_r = 209.24$
Monoclinic, $P2_1/c$
a = 6.0861 (13) Å
b = 49.810 (10) Å
c = 7.4043 (15) Å
$\beta = 90.386 \ (4)^{\circ}$

V = 2244.6 (8) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 294 (2) K $0.26 \times 0.24 \times 0.20$ mm

Data collection

Bruker SMART CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1997) $T_{\rm min} = 0.977, T_{\rm max} = 0.982$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	275 parameters
$wR(F^2) = 0.090$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
4592 reflections	$\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O6 ⁱ	0.86	2.00	2.863 (3)	175
$N2-H2\cdots O3^{ii}$	0.86	2.00	2.861 (3)	174

Symmetry codes: (i) x - 1, y, z; (ii) x, y, z + 1.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank the fund of Hebei University of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2385).

References

Bruker (1997). SADABS (Version 2.0), SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Madding, G. D. (1986). US Patent No. 4 596 884.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o2959 [doi:10.1107/S1600536807022726]

N-[2-(4-Methoxyphenoxy)ethyl]acetamide

Z.-H. Shang, H.-J. Lv and J.-L. Gao

Comment

Nefazodone is a type of antidepressive drug (Madding, 1986). The title compound, which can be hydrolized to 2-(4-methoxyphenoxy)ethanamine, was obtained in order to attempt to synthesize compounds analogous to Nefazodone. *N*-(2-(4-methoxyphenoxy)ethyl)acetamide was synthesized from 4-methoxyphenol and 2-methyl-4,5-dihydrooxazole under reflux under N₂. The crystal structure is stabilized mainly through intermolecular N—H···O hydrogen bonds.

Experimental

The mixture of 4-bromophenol 12.4 g (0.10 mol) and 2-methyl-4,5-dihydrooxazole 1.2 g(0.12 mol) was slowly heated to reflux under nitrogen and maintained for 7 h while monitored by TLC. After completion of the reaction, excess 2-methyl-4,5-dihydrooxazole was recovered by distillation and the residue was cooled to room temperature and added 50 ml NaOH solution(10%). The product was filtered and purifed by by column chromatography. 50 mg of the title compound was dissolved in 20 ml me thanol; the solution was kept at room temperature for 20 d by natural evaporation to give colorless single crystals of (I), suitable for X-Ray analysis.

Refinement

H atoms were positioned geometrically, with C—H = 0.93-0.97Å and N—H = 0.86 Å. They were refined in a riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(C)$ for methyl H atoms.

Figures

N-[2-(4-Methoxyphenoxy)ethyl]acetamide

Crystal data	
C ₁₁ H ₁₅ NO ₃	$F_{000} = 896$
$M_r = 209.24$	$D_{\rm x} = 1.238 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 496-498 K
Hall symbol: -P 2ybc	Mo K α radiation $\lambda = 0.71073$ Å
<i>a</i> = 6.0861 (13) Å	Cell parameters from 2481 reflections
<i>b</i> = 49.810 (10) Å	$\theta = 2045 - 23.0^{\circ}$
c = 7.4043 (15) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 90.386 \ (4)^{\circ}$	T = 294 (2) K
V = 2244.6 (8) Å ³	Block, colorless
Z = 8	$0.26 \times 0.24 \times 0.20 \text{ mm}$

Data collection

Bruker SMART CCD diffractometer	4592 independent reflections
Radiation source: fine-focus sealed tube	2442 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.043$
T = 294(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
φ and ω scans	$\theta_{\min} = 0.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -7 \rightarrow 7$
$T_{\min} = 0.977, \ T_{\max} = 0.982$	$k = -41 \rightarrow 62$
12862 measured reflections	$l = -8 \rightarrow 9$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.056$	$w = 1/[\sigma^2(F_o^2) + (0.0796P)^2 + 0.1165P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.090$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$
4592 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
275 parameters	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.1801 (3)	0.21713 (3)	0.4769 (2)	0.0560 (5)
O2	0.4970 (3)	0.11353 (3)	0.4256 (2)	0.0540 (5)
03	0.7789 (4)	0.04205 (5)	0.1509 (3)	0.1111 (10)
O4	0.6768 (3)	0.21834 (3)	0.9432 (2)	0.0559 (5)
05	0.9966 (3)	0.11483 (3)	0.9755 (2)	0.0490 (5)
O6	1.3017 (4)	0.05180 (5)	0.6685 (3)	0.1050 (9)
N1	0.6282 (4)	0.05968 (4)	0.3971 (3)	0.0567 (6)
H1	0.5282	0.0583	0.4781	0.068*
N2	1.1293 (4)	0.06004 (4)	0.9255 (3)	0.0544 (6)
H2	1.0231	0.0558	0.9959	0.065*
C1	-0.0118 (5)	0.22455 (6)	0.3806 (5)	0.0744 (9)
H1A	0.0125	0.2224	0.2535	0.112*
H1B	-0.0464	0.2430	0.4058	0.112*
H1C	-0.1318	0.2133	0.4171	0.112*
C2	0.2497 (4)	0.19099 (5)	0.4623 (3)	0.0396 (6)
C3	0.1409 (4)	0.17102 (5)	0.3673 (3)	0.0430 (6)
Н3	0.0100	0.1748	0.3070	0.052*
C4	0.2280 (4)	0.14543 (5)	0.3624 (3)	0.0415 (6)
H4	0.1543	0.1320	0.2988	0.050*
C5	0.4219 (4)	0.13936 (5)	0.4501 (3)	0.0387 (6)
C6	0.5288 (4)	0.15904 (5)	0.5493 (3)	0.0435 (6)
Н6	0.6575	0.1551	0.6121	0.052*
C7	0.4420 (4)	0.18470 (5)	0.5540 (3)	0.0435 (6)
H7	0.5141	0.1980	0.6200	0.052*
C8	0.6947 (4)	0.10513 (5)	0.5113 (4)	0.0567 (7)
H8A	0.6660	0.1000	0.6352	0.068*
H8B	0.8006	0.1197	0.5122	0.068*
C9	0.7836 (5)	0.08171 (5)	0.4081 (5)	0.0672 (9)
H9A	0.8207	0.0875	0.2870	0.081*
H9B	0.9174	0.0755	0.4664	0.081*
C10	0.6358 (5)	0.04167 (6)	0.2659 (4)	0.0626 (8)
C11	0.4603 (5)	0.02066 (6)	0.2641 (4)	0.0761 (9)
H11A	0.3950	0.0197	0.1458	0.114*
H11B	0.3498	0.0252	0.3508	0.114*
H11C	0.5235	0.0036	0.2944	0.114*
C12	0.4858 (5)	0.22556 (6)	1.0413 (5)	0.0761 (10)
H12A	0.3651	0.2144	1.0039	0.114*
H12B	0.4507	0.2440	1.0181	0.114*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H12C	0.5127	0.2231	1.1681	0.114*
C13	0.7487 (4)	0.19226 (5)	0.9541 (3)	0.0403 (6)
C14	0.6415 (4)	0.17188 (5)	1.0475 (3)	0.0417 (6)
H14	0.5115	0.1755	1.1083	0.050*
C15	0.7294 (4)	0.14637 (5)	1.0494 (3)	0.0409 (6)
H15	0.6585	0.1328	1.1128	0.049*
C16	0.9212 (4)	0.14067 (5)	0.9585 (3)	0.0362 (6)
C17	1.0268 (4)	0.16081 (5)	0.8639 (3)	0.0425 (6)
H17	1.1557	0.1571	0.8018	0.051*
C18	0.9391 (4)	0.18638 (5)	0.8624 (3)	0.0430 (6)
H18	1.0099	0.1999	0.7985	0.052*
C19	1.2056 (4)	0.10835 (5)	0.9008 (4)	0.0509 (7)
H19A	1.3123	0.1221	0.9320	0.061*
H19B	1.1950	0.1073	0.7702	0.061*
C20	1.2753 (5)	0.08168 (5)	0.9779 (4)	0.0595 (8)
H20A	1.4227	0.0776	0.9372	0.071*
H20B	1.2794	0.0829	1.1086	0.071*
C21	1.1539 (5)	0.04652 (6)	0.7719 (4)	0.0614 (8)
C22	0.9902 (5)	0.02469 (6)	0.7364 (4)	0.0813 (10)
H22A	0.9622	0.0234	0.6089	0.122*
H22B	0.8558	0.0287	0.7978	0.122*
H22C	1.0477	0.0079	0.7796	0.122*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0594 (12)	0.0379 (10)	0.0706 (13)	0.0045 (9)	-0.0100 (10)	-0.0026 (9)
O2	0.0517 (12)	0.0447 (11)	0.0654 (12)	0.0068 (9)	-0.0082 (9)	-0.0054 (9)
O3	0.131 (2)	0.0875 (18)	0.116 (2)	-0.0183 (15)	0.0837 (19)	-0.0161 (15)
O4	0.0582 (12)	0.0401 (11)	0.0696 (12)	0.0060 (9)	0.0087 (10)	0.0064 (9)
O5	0.0467 (11)	0.0416 (11)	0.0587 (11)	0.0002 (8)	0.0091 (8)	0.0024 (8)
O6	0.122 (2)	0.1002 (19)	0.0933 (18)	-0.0285 (15)	0.0700 (17)	-0.0220 (14)
N1	0.0571 (15)	0.0468 (14)	0.0665 (16)	0.0042 (11)	0.0239 (12)	0.0071 (12)
N2	0.0595 (15)	0.0455 (13)	0.0585 (15)	0.0018 (11)	0.0219 (11)	0.0006 (12)
C1	0.066 (2)	0.059 (2)	0.098 (2)	0.0161 (16)	-0.0107 (19)	-0.0002 (18)
C2	0.0437 (15)	0.0364 (14)	0.0388 (14)	-0.0035 (11)	0.0023 (11)	0.0026 (11)
C3	0.0379 (15)	0.0461 (16)	0.0448 (15)	0.0005 (12)	-0.0062 (11)	-0.0030 (12)
C4	0.0387 (14)	0.0426 (15)	0.0432 (15)	-0.0080 (11)	-0.0006 (11)	-0.0080 (11)
C5	0.0393 (15)	0.0356 (14)	0.0412 (14)	-0.0017 (11)	0.0051 (11)	0.0003 (11)
C6	0.0399 (15)	0.0464 (16)	0.0439 (15)	-0.0019 (12)	-0.0074 (11)	0.0023 (12)
C7	0.0435 (15)	0.0437 (15)	0.0431 (15)	-0.0102 (12)	-0.0050 (12)	-0.0028 (12)
C8	0.0513 (17)	0.0485 (17)	0.0701 (19)	0.0042 (14)	-0.0048 (14)	0.0037 (14)
C9	0.0546 (18)	0.0528 (18)	0.095 (2)	0.0047 (15)	0.0157 (16)	0.0065 (17)
C10	0.071 (2)	0.0522 (18)	0.0645 (19)	0.0085 (15)	0.0244 (16)	0.0095 (16)
C11	0.088 (2)	0.064 (2)	0.076 (2)	-0.0072 (18)	0.0158 (18)	-0.0042 (17)
C12	0.067 (2)	0.0541 (19)	0.107 (3)	0.0160 (16)	0.0101 (19)	0.0039 (18)
C13	0.0418 (15)	0.0380 (14)	0.0410 (14)	-0.0040 (11)	-0.0065 (11)	0.0020 (11)
C14	0.0365 (14)	0.0447 (16)	0.0438 (15)	-0.0014 (11)	0.0039 (11)	0.0019 (12)

C15	0.0384 (14)	0.0415 (14)	0.0429 (14)	-0.0084 (11)	0.0022 (11)	0.0063 (11)
C16	0.0361 (14)	0.0357 (14)	0.0366 (13)	-0.0033 (11)	-0.0021 (11)	-0.0003 (11)
C17	0.0360 (14)	0.0510 (16)	0.0407 (14)	-0.0059 (12)	0.0062 (11)	0.0011 (12)
C18	0.0446 (15)	0.0425 (15)	0.0419 (14)	-0.0068 (12)	0.0024 (12)	0.0044 (12)
C19	0.0412 (15)	0.0460 (15)	0.0654 (17)	-0.0024 (12)	0.0050 (13)	-0.0037 (14)
C20	0.0557 (18)	0.0529 (18)	0.0700 (19)	0.0070 (15)	-0.0026 (15)	-0.0022 (15)
C21	0.075 (2)	0.0455 (17)	0.0634 (19)	0.0015 (15)	0.0222 (16)	-0.0028 (15)
C22	0.098 (3)	0.056 (2)	0.089 (2)	-0.0116 (18)	0.013 (2)	-0.0147 (18)
G						
Geometric part	ameters (A, °)					
O1—C2		1.374 (3)	C8—	-H8A	0.97	00
O1—C1		1.413 (3)	C8—	-H8B	0.97	00
O2—C5		1.378 (3)	С9—	-H9A	0.97	00
O2—C8		1.420 (3)	С9—	-H9B	0.97	00
O3—C10		1.222 (3)	C10-	C11	1.49	6 (4)
O4—C13		1.373 (3)	C11-	-H11A	0.96	00
O4—C12		1.421 (3)	C11-	-H11B	0.96	00
O5—C16		1.372 (3)	C11-	-H11C	0.96	00
O5—C19		1.428 (3)	C12-	-H12A	0.96	00
O6—C21		1.214 (3)	C12-	-H12B	0.96	00
N1-C10		1.323 (4)	C12-	-H12C	0.96	00
N1—C9		1.451 (3)	C13-	C18	1.37	9 (3)
N1—H1		0.8600	C13-	C14	1.39	3 (3)
N2-C21		1.331 (3)	C14-	C15	1.37	8 (3)
N2-C20		1.448 (3)	C14-	-H14	0.93	00
N2—H2		0.8600	C15-	C16	1.38	1 (3)
C1—H1A		0.9600	C15-	-H15	0.93	00
C1—H1B		0.9600	C16-	C17	1.38	4 (3)
C1—H1C		0.9600	C17-	C18	1.38	1 (3)
С2—С3		1.385 (3)	C17-	-H17	0.93	00
C2—C7		1.385 (3)	C18-	-H18	0.93	00
C3—C4		1.381 (3)	C19-	C20	1.50	6 (3)
С3—Н3		0.9300	C19-	-H19A	0.97	00
C4—C5		1.376 (3)	C19-	-H19B	0.97	00
C4—H4		0.9300	C20-	-H20A	0.97	00
C5—C6		1.385 (3)	C20-	-H20B	0.97	00
C6—C7		1.384 (3)	C21-	C22	1.49	7 (4)
С6—Н6		0.9300	C22–	-H22A	0.96	00
С7—Н7		0.9300	C22-	-H22B	0.96	00
С8—С9		1.497 (4)	C22–	-H22C	0.96	00
C2—O1—C1		117.6 (2)	C10-		109.	5
С5—О2—С8		119.83 (19)	H11A	A—C11—H11B	109.	5
C13—O4—C12	2	118.1 (2)	C10-	C11H11C	109.	5
C16—O5—C19)	118.35 (18)	H11A	A—C11—H11C	109.	5
C10—N1—C9		121.9 (2)	H11E	3— С11—Н11С	109.	5
C10—N1—H1		119.1	O4—	-C12—H12A	109.	5
C9—N1—H1		119.1	O4—	-C12—H12B	109.	5
C21—N2—C20)	122.2 (2)	H12A	A—C12—H12B	109.	5

C21—N2—H2	118.9	O4—C12—H12C	109.5
C20—N2—H2	118.9	H12A—C12—H12C	109.5
O1—C1—H1A	109.5	H12B—C12—H12C	109.5
O1—C1—H1B	109.5	O4—C13—C18	116.2 (2)
H1A—C1—H1B	109.5	O4—C13—C14	124.7 (2)
O1—C1—H1C	109.5	C18—C13—C14	119.2 (2)
H1A—C1—H1C	109.5	C15—C14—C13	119.6 (2)
H1B—C1—H1C	109.5	C15—C14—H14	120.2
O1—C2—C3	125.0 (2)	C13—C14—H14	120.2
O1—C2—C7	115.8 (2)	C14—C15—C16	120.9 (2)
C3—C2—C7	119.1 (2)	C14—C15—H15	119.6
C4—C3—C2	119.6 (2)	C16—C15—H15	119.6
С4—С3—Н3	120.2	O5-C16-C15	115.6 (2)
С2—С3—Н3	120.2	O5-C16-C17	124.7 (2)
C5—C4—C3	121.2 (2)	C15—C16—C17	119.7 (2)
С5—С4—Н4	119.4	C18—C17—C16	119.4 (2)
С3—С4—Н4	119.4	C18—C17—H17	120.3
C4—C5—O2	115.3 (2)	С16—С17—Н17	120.3
C4—C5—C6	119.5 (2)	C13—C18—C17	121.2 (2)
O2—C5—C6	125.2 (2)	C13—C18—H18	119.4
C7—C6—C5	119.3 (2)	С17—С18—Н18	119.4
С7—С6—Н6	120.3	O5—C19—C20	107.6 (2)
С5—С6—Н6	120.3	O5—C19—H19A	110.2
C6—C7—C2	121.2 (2)	C20—C19—H19A	110.2
С6—С7—Н7	119.4	O5—C19—H19B	110.2
С2—С7—Н7	119.4	С20—С19—Н19В	110.2
02—C8—C9	108.0 (2)	H19A—C19—H19B	108.5
O2—C8—H8A	110.1	N2—C20—C19	112.6 (2)
С9—С8—Н8А	110.1	N2—C20—H20A	109.1
O2—C8—H8B	110.1	С19—С20—Н20А	109.1
С9—С8—Н8В	110.1	N2—C20—H20B	109.1
H8A—C8—H8B	108.4	С19—С20—Н20В	109.1
N1—C9—C8	112.4 (2)	H20A—C20—H20B	107.8
N1—C9—H9A	109.1	O6—C21—N2	121.1 (3)
С8—С9—Н9А	109.1	O6—C21—C22	122.8 (3)
N1—C9—H9B	109.1	N2—C21—C22	116.1 (3)
С8—С9—Н9В	109.1	C21—C22—H22A	109.5
Н9А—С9—Н9В	107.9	C21—C22—H22B	109.5
O3—C10—N1	122.0 (3)	H22A—C22—H22B	109.5
O3—C10—C11	121.1 (3)	C21—C22—H22C	109.5
N1-C10-C11	116.9 (3)	H22A—C22—H22C	109.5
C10-C11-H11A	109.5	H22B—C22—H22C	109.5
C1—O1—C2—C3	-3.2(3)	C12—O4—C13—C18	-177.6 (2)
C1-01-C2-C7	178.0 (2)	C12-04-C13-C14	3.4 (4)
01	179.9 (2)	O4—C13—C14—C15	-179.9 (2)
C7—C2—C3—C4	-1.3 (3)	C18—C13—C14—C15	1.1 (4)
C2—C3—C4—C5	-0.2 (4)	C13—C14—C15—C16	-0.6 (4)
C3—C4—C5—O2	-176.3 (2)	C19—O5—C16—C15	-173.5 (2)
C3—C4—C5—C6	1.9 (4)	C19—O5—C16—C17	4.2 (3)

C8—O2—C5—C4	-179.5 (2)	C14—C15—C16—O5	177.8 (2)
C8—O2—C5—C6	2.5 (3)	C14—C15—C16—C17	-0.1 (4)
C4—C5—C6—C7	-1.9 (3)	O5-C16-C17-C18	-177.4 (2)
O2—C5—C6—C7	176.0 (2)	C15—C16—C17—C18	0.3 (3)
C5—C6—C7—C2	0.4 (4)	O4—C13—C18—C17	180.0 (2)
O1—C2—C7—C6	-179.9 (2)	C14—C13—C18—C17	-0.9 (4)
C3—C2—C7—C6	1.2 (4)	C16—C17—C18—C13	0.2 (4)
C5—O2—C8—C9	-157.5 (2)	C16—O5—C19—C20	165.5 (2)
C10—N1—C9—C8	155.8 (3)	C21—N2—C20—C19	86.4 (3)
O2—C8—C9—N1	-57.7 (3)	O5—C19—C20—N2	63.7 (3)
C9—N1—C10—O3	2.8 (5)	C20-N2-C21-O6	0.1 (4)
C9—N1—C10—C11	-177.2 (3)	C20—N2—C21—C22	180.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1···O6 ⁱ	0.86	2.00	2.863 (3)	175
N2—H2···O3 ⁱⁱ	0.86	2.00	2.861 (3)	174
~				

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, *y*, *z*+1.

Fig. 2